vicinal diester diamions. Annelation with allylic and benzylic α , ω -dihalides. Synthesis of tricyclobuta[1,2:3,4:6,7]naphthalene

Kevin G. Bilyard, Peter J. Garratt, Alan J. Underwood, and Robert Zahler

Department of Chemistry, University College London, London WC1H OAJ

Abstract: A new method of annelation utilizing the reaciton of vicinal diester dianions with allylic and benzylic α, ω -dihalides is described. The synthesis of tricyclobuta-[1,2:3,4:6,7]naphthalene is reported.

We have previously described the preparation 1 and some reactions 2 of the dimethyl cyclobutane-1,2-dicarboxylate diamion (1). We now wish to report the preparation of the dimethyl cyclohexane-1,2-dicarboxylate diamion (7) and describe a new method of annelation utilizing the reactions of 1 and 7 with allylic and benzylic α, ω -dihalides.

The dianion $\underline{1}$, prepared in THF by addition of the diester to 2 mole equivalents of lithium diisopropylamide at -75 °, 1 was reacted with 1 mole equivalent of α,α' -dibromo-oxylene (2) at -98 ° and stirred for 1 h. The reaction mixture was then warmed to -75 ° and after 1 h quenched with aqueous acetic acid to yield the annelated product $\underline{3a}$ (48 %). 3,4,5 Base hydrolysis of $\underline{3a}$ gave $\underline{3b}$ (79 %), which was decarboxylated with Pb(OAC) $_4$ in DMSO to give cyclobuta[b]naphthalene ($\underline{4}$), 28 %. In addition, the dianion $\underline{1}$ reacted at -75 °C with cis-1,4-dichloro-2-butene ($\underline{5}$) to give the annelated compound $\underline{6}$ (37 %). 5,7

The diamion $\underline{7}$ was prepared at -75 $^{\circ}$ by dropwise addition of the diester to a THF solution of LDA (2.0 mole equivalents) containing HMPA (2.8 mole equivalents). Reaction of diamion $\underline{7}$ with 1 mole equivalent of α, α' -dibromo-o-xylene at 20 $^{\circ}$ for 18 h produced the annelated product $\underline{8}$ in 48 % yield. $\underline{^{3},^{4},^{8}}$ The diamion $\underline{7}$ in THF-HMPA reacted at 20 $^{\circ}$ C with $\underline{5}$ to give $\underline{9}$ (61 %). $\underline{^{5},^{9}}$

As an example of the synthetic utility of this annelation process, we have completed the preparation of tricyclobuta [1,2:3,4:6,7]naphthalene (15) as shown in the Scheme. 1-Bromocyclobutene 10 was treated with magnesium and then copper (I) chloride to give 10, 60 %, 4 , 11 which on reaction with dimethylacetylene dicarboxylate gave the adduct 11, 100 %. 3 , 4 Dehydrogenation of 11 with DDQ in benzene gave 12, mp 112-114 0 , 38 %, 3 , 4 which was reduced with LiAlH₄ to the diol 13a, mp 121-124 0 , 82 %. 3 , 4 Treatment of 13a with PBr₃ gave the dibromide 13b, 74 %, 3 , 4 which on reaction with 1.25 mole equivalents of 1 gave 14a, 12a, 12a,

No. 20

The reaction of α , ω -dihalides with these vicinal diester dianions provides an alternative synthetic method to the Diels-Alder reaction. We are currently studying the limitations of this reaction and are exploring further the chemistry of vicinal dianions.

ACKNOWLEDGMENTS

We thank the Science Research Council, U.K., for their support. K.G.B. and A.J.U. are recipients of SRC graduate studentships.

REFERENCES AND FOOTNOTES

- P.J. Garratt and R. Zahler, J. Amer. Chem. Soc., 100, 7753 (1978).
- P.J. Garratt and R. Zahler, Tetrahedron Letters, 73 (1979).
- Satisfactory analytical and/or high resolution mass spectral data have been obtained for this compound.
- 4. 1 H NMR, δ : $\frac{3a}{2}$ (CDCl₃), 7.22 (m, 4H), 3.71 (s, 6H), 2.92 (d of d, 4H), 2.33 (m, 2H), 1.34 (m, 2H); $\frac{8}{2}$ (CCl₄), 7.04 (brs, 4H), 3.66 (s, 6H), 3.13 (brd, 4H), 2.41-1.11 (m, 8H); $\frac{10}{2}$ (CDCl₃), 5.83 (brs, 2H), 2.54 (m, 8H); $\frac{11}{2}$ (CDCl₃) 3.80 (s, 6H), 3.70 (m, 2H), 2.88-1.79 (m, 8H); $\frac{12}{2}$ (CCl₄) 3.78 (s, 6H), 3.17 (m, 8H); $\frac{13a}{2}$ (CDCl₃) 4.62 (s, 4H), 3.15 (brs, 8H), 2.48 (brs, 2H); $\frac{13b}{2}$ (CDCl₃) 4.53 (s, 4H), 3.13 (brs, 8H); $\frac{14a}{2}$ (CDCl₃) 3.69 (s, 6H), 3.07 (m, 10H), 2.70 (brd, 2H), 2.36 (m, 2H), 1.35 (m, 2H).
- 5. The <u>cis</u>-configuration of the annelated compounds <u>6</u> and <u>9</u> was assigned by comparison with the authentic compounds prepared by the appropriate Diels-Alder route. 7,9

 The stereochemistry of the annelated products 3, 8, and 14 was assigned by analogy.
- M.P. Cava and R.L. Shirley, J. Amer. Chem. Soc., 82, 654 (1960); R.P. Thummel,
 W.E. Cravey, and W. Nutakul, J. Org. Chem., 43, 2473 (1978).
- E. Vogel, O. Roos, and K.H. Disch, Ann. Chem., 653, 55 (1962); R.P. Thummel and
 W. Nutakul, J. Org. Chem., 42, 300 (1977).
- 8. Alkylation of dianion 7 is considerably slower than alkylation of dianion 1. The presence of HMPA in solutions of 7 resulted in enhanced yields of annelated products 8 and 9.
- K. Alder and K.H. Backendorf, <u>Ber.</u>, <u>71</u>, 2199 (1938); P. Brigl and R. Herrmann, Ber, <u>71</u>, 2280 (1938).
- 10. R. Willstätter and W. von Schmaedel, Ber., 38, 1992 (1905).
- Since the completion of this synthesis of 10, a similar reaction sequence using copper(II) chloride has been reported by F. Heinrich and W. Lüttke, Ann. Chem., 1978, 1880.
- 12. See R.P. Thummel and W. Nutakul, J. Amer. Chem. Soc., 100, 6171 (1978).

(Received in UK 5 March 1979)